Name of Teacher: Dr. Vinod Gill

Class: B.A./B.Sc. 1st Year/2nd Semester

Paper: Ordinary Differential Equations and Laplace Transform Session: 2021-22

Sr.No.	Months	Weeks	Topics
1.	April	1 st Week 2 nd Week	 Geometrical meaning of a differential equation. Exact differential equations, integrating factors. First order higher degree equations solvable for x,y,p Lagrange's equations
		3 rd Week	 Clairaut's equations. Clairaut's equations. Equation reducible to Clairaut's form. Singular solutions. Orthogonal trainestation in Contaction accordinates and polen.
		Last week	4. Orthogonal trajectories: in Cartesian coordinates and polar coordinates.
2.	May	1 st Week	1. Self orthogonal family of curves. Linear differential equations with constant coefficients.
		2 nd Week	 Homogeneous linear ordinary differential equations. Equations reducible to homogeneous.
		3 rd Week	 Linear differential equations of second order. Reduction to normal form.
		Last Week	 Transformation of the equation by changing the dependent variable/ the independent variable. Solution by operators of non-homogeneous linear differential equations.
3.	June	1 st Week	1. Reduction of order of a differential equation. Method of variations of parameters.
		2 nd Week	2. Ordinary simultaneous differential equations. Solution of simultaneous differential equations.
		3 rd Week	3. Existence theorem for Laplace transforms, Linear property of the Laplace transform, Shifting theorems,
		Last Week	 Laplace transform of derivatives and integrals, Differentiation and integration of Laplace transforms, Convolution theorem. Inverse Laplace transform, convolution theorem, Inverse Laplace transform of derivatives, solution of ordinary differential equations using Laplace transform.

Name of Teacher: Richa Kumari

Class: B.A./B.Sc. 1st Year/2nd Semester

Paper VECTOR CALCULAS AND SOLID GEOMETRY

Session: 2021-22

Sr.No.	Months	Weeks	Topics
1.	April	1 st Week 2 nd Week	 Scalar and vector product of three vectors, product of four vectors, Reciprocal vectors, Vector differentiation Scalar Valued point functions, vector valued point functions, derivative along a curve, directional derivatives. Gradient of a scalar point function, geometrical interpretation of grad Φ, Divergence and curl of vector point function.
		3 rd Week	3. Gradient, divergence and curl of sums and product and their related vector identities, Laplacian operator.
		Last Week	 Vector integration: Indefinite Integral, Definite Integral, Standard results of Integration, Line integral, Surface integral, Volume integral. Gauss Divergence Theorem.
2.	May	1 st Week 2 nd Week 3 rd Week Last Week	 Gauss Divergence Theorem, Divergence Theorem in Cartesian Co-ordinates, Green Theorem, Stoke's Theorem (Relation between line Integral Surface Integral) Stokes's Theorem in Cartesian form. Green's Theorem in Plane as special case of Stoke's Theorem. General equation of second degree, Tracing of conics. System of conics, confocal conic, Tangent at any point to the conic, chord of contact.
3.	June	1 st Week 2 nd Week 3 rd Week Last Week	 Pole of line to the conic, director circle of conic, Polar equation of a conic, tangent and normal to the conic. Sphere: Plane section of a sphere, Sphere through a given circle. Intersection of two spheres, radical plane of two spheres, Co- axial system of spheres. Cones: Right circular cone, Enveloping cone and reciprocal cone. Cylinder: Right circular cylinder and enveloping cylinder. Revision

Name of Teacher: Dr. Vinod Gill

Class: B.A./B.Sc. 2nd Year/4th Semester

Paper: Partial Differential Equations and Special Functions

Sr.No.	Months	Weeks	Topics
1.	April	1 st Week	1. Partial differential equations: Formation, order and degree,
		2nd West	first orden. Complete solution
		2 week	Singular solution.
		2rd West	2. Singular solution, General solution, Solution of Lagrange's
		5 Week	2 Commotible systems of first order equations. Isochi's method
		Lost Weels	5. Comparise systems of first order equations, Jacobi s method.
		Last week	4. Linear partial differential equations of second and higher
			bomogeneous agustions with constant coefficients
2	Maria	1 St XX1-	I Derticl differential emotion with constant coefficients
Ζ.	way	1 week	1. Partial differential equation with variable coefficients
		and XX 1	reducible to equations with constant coefficients, their
		2 nd week	Complimentary functions and particular integrals,
			2. Equations reducible to linear equations with constant
			coefficients. Method of separation of variables: Solution of
		ord XX 1	Laplace's equation,
		3 rd Week	3. Wave equation (one and two dimensions), Diffusion (Heat)
			equation (one and two dimension) in Cartesian Co-ordinate
			system. Classification of linear partial differential equations of
			second order, hyperbolic, parabolic and elliptic types,
			Reduction of second order linear partial differential equations
			to Canonical (Normal) forms and their solutions
		Last Week	4. Solution of linear hyperbolic equations, Monge's method for
			partial differential equations of second order.
3.	June	1 st Week	1. Cauchy's problem for second order partial differential
		- nd	equations, Characteristic equations and characteristic curves
		2 nd Week	of second order partial differential equation.
		- nd	2. Series solution of differential equations – Power series
		3 rd Week	method. Bessel equation and its solution. Bessel functions and
			their properties-Convergence, recurrence, Relations and
		Last Week	generating functions, Orthogonality of Bessel functions
			3. Legendre differential equation and its solution: Legendre
			function and its propertiesRecurrence Relations and
			generating functions.
			4. Orthogonality of Legendre polynomial. Rodrigues' Formula
			for Legendre Polynomial

Session: 2021-22

Name of Teacher: Richa Kumari

Class: B.A./B.Sc. 2nd Year/4th Semester

Paper : Mechanics-I

Session: 2021-22

Sr.No.	Months	Weeks	Topics
1.	April	1 st Week	1. Forces in two dimension (co-planner), triangle law and polygon law of forces.
		2 nd Week	 Lami's theorem, resultant of concurrent and coplanar forces, conditions of equilibrium of concurrent forces.
		3 rd Week	3. Parallel forces: like parallel and unequal unlike parallel forces.
		Last Week	4. Resultant and centre of parallel forces, Moments and Couples, Forces in three dimensions, Poinsot's central axis.
2.	May	1 st Week	1. Conditions for the reduction of a general system of forces in space to a single force, equations of central axis.
		2 nd Week	2. Wrenches: Definition and basic laws, resultant wrench of two wrenches, locus of the central axis of two wrenches.
		3 rd Week	3. Null lines and null planes, Velocity and acceleration along a plane curve.
		Last Week	4. Component of velocity and acceleration in radial, transverse, tangential and normal directions, Relative velocity and acceleration.
3.	June	1 st Week	 Simple harmonic motion (SHM), Newton's laws of motion, Central Orbits.
		2 nd Week	2. Differential equations of Central Orbits in polar form and in pedal form, areal velocity, elliptic, hyperbolic and parabolic orbit, velocity in a circle.
		3 rd Week	 Apse and apsidal distances, definition and laws, velocity from infinity, Kepler's laws of planetary motion, Equivalence of Kepler's laws of planetary motion.
		Last Week	 Newton's law of gravitation, motion under the inverse square law, Revision

Name of Teacher: Sh. Ravinder

Class: B.A. 3rd Year/6th Semester

Paper: Real and Complex Analysis

Session: 2021-22

Sr.No.	Months	Weeks	Topics
	April	1 st Week	1. Improper integrals and their convergence
		2 nd Week	2. comparison tests
			3. Abel's and Dirichlet's tests, Frullani's integral,
1.		3 rd Week	4. Integral as a function of a parameter. Continuity,
			differentiability and integrability of an integral of a function of
			a parameter.
		Last Week	5. Definition and examples of metric spaces, neighborhoods,
			limit points, interior points, open and closed sets
		1 st Week	1. Closure and interior, boundary points, subspace of a metric
			space, equivalent metrics, Cauchy sequences, completeness,
			Cantor's intersection theorem.
		2 nd Week	2. Baire's category theorem, Contraction Principle, continuous
	May		functions, uniform continuity.
2.		3 rd Week	3. Compactness for metric spaces, sequential compactness,
			Bolzano-Weierstrass Property, total boundedness,
			4. Finite intersection property, continuity in relation with
			compactness, connectedness.
		Last Week	5. Topology of complex numbers: Trigonometric, exponential,
			logarithmic and hyperbolic trigonometric functions
3.		1 st Week	1. Finite intersection property, continuity in relation with
			compactness, connectedness.
		2 nd Week	2. Extended complex plane, Stereographic projection of complex
			numbers.
	June	3 rd Week	3. Continuity and differentiability of complex functions.
			Analytic functions, Cauchy-Riemann equations, harmonic
			conjugates, harmonic functions
		Last Week	4. Construction of analytic functions: direct method and Milne-
			Thomson method.

Name of Teacher: Dr. Vinod Gill

Class: B.A. 3rd Year/6th Semester

Paper: Mechanics-II

Session: 2021-22

Sr.No.	Months	Weeks	Topics
1.	April	1 st Week	1. Analytical conditions of equilibrium of co-planar forces: Equilibrium of three forces, conditions of equilibrium, trigonometric theorem's.
		2 nd Week	 Conditions of equilibrium of co-planar forces (First, Second and Third form); Friction: Definition of friction and basic laws.
		3 rd Week	3. Problems based on equilibrium of rods and ladders; Centre of gravity: Basic concepts and definitions.
		Last Week	4. Centre of gravity of a uniform rod, a thin uniform lamina in the form of a parallelogram.
	May	1 st Week	1. A thin uniform triangular lamina, three uniform rods forming a triangle, a uniform quadrilateral lamina, lamina in the form of a trapezium, centre of gravity of a body by integration
2.		2 nd Week	2. Motion of a particle attached to an elastic string, Hooke's law, motion of horizontal and vertical elastic strings.
		3 rd Week	3. Definition of work, Power and Energy, work done by a variable force, work done in stretching an elastic string,
		Last Week	 4. Conservative system of forces, principle of conservation of energy, impulse of a constant force and a variable force.
3.	June	1 st Week	1. Motion of a particle on smooth curves, motion on the outside and inside of a smooth vertical circle.
		2 nd Week	2. Projectile motion of a particle in a plane, velocity at any point of the trajectory
		3 rd Week	 Directions of projection for a particle, range and time of flight on an inclined plane.
		Last Week	4. Directions of projection for a given velocity and a given range; range and time of fight down an inclined plane.
			5. Revision

Name of Teacher: Mrs. Richa Kumari

Class: B.A. 3rd Year/6th Semester

Paper: Linear Algebra

Session: 2021-22

Sr.No.	Months	Weeks	Topics
1.	April	1 st Week	1. Vector spaces, subspaces, Sum and Direct sum of subspaces, Linear span
		2 nd Week	 Linearly Independent and dependent subsets of a vector space. Finitely generated vector space, Existence theorem for basis of a finitely generated vector space, Finite dimensional vector spaces.
		3 rd Week	 3. Invariance of the number of elements of bases sets, Dimensions, Quotient space and its dimension, Homomorphism and isomorphism of vector spaces.
		Last Week	4. Linear transformations and linear forms on vector spaces, Vector space of all the linear transformations.
2.	May	1 st Week	5. Null Space, Range space of a linear transformation, Rank and Nullity Theorem, algebra of Linear Transformation.
		2 nd Week	6. Minimal Polynomial of a linear transformation, Singular and non-singular linear transformations.
		3 rd Week	7. Matrix of a linear Transformation, Change of basis.
		Last Week	8. Eigen values and Eigen vectors of linear transformations, Inner product spaces.
3.	June	1 st Week	1. Cauchy-Schwarz inequality, Orthogonal vectors, Orthogonal complements, Orthogonal sets and Basis.
		2 nd Week	2. Bessel's inequality for finite dimensional vector spaces.
			3. Gram Schmidt, Orthogonalization process, adjoint of a linear
		3 rd Week	transformation and its properties.
		x . xx 1	4. Unitary linear transformations, Revision.
		Last Week	

Name of Teacher: Mr. Ravinder

Paper: Solid Geometry

Class: B.A. 3rd Year/6th Semester

Session: 2021-22

Sr.No.	Months	Weeks	Topics
1.	April	1 st Week 2 nd Week 3 rd Week Last Week	 Central Conicoids: Equation of tangent plane. Director sphere. Normal to the conicoids. Polar plane of a point.
2.	May	1 st Week 2 nd Week 3 rd Week Last Week	 Enveloping cone of a coincoid. Enveloping cylinder of a coincoid. Paraboloids: Circular section. Plane sections of conicoids.
3.	June	1 st Week 2 nd Week 3 rd Week Last Week	 Generating lines. Confocal conicoid. Reduction of second degree equations. Revision.